66 const int relativeOctave = octave - 4;
75constexpr inline T
sign(T n)
77 static_assert(std::is_arithmetic_v<T>,
"sign requires a numeric type");
78 return n < T(0) ? T(-1) : T(1);
88 static_assert(std::is_integral_v<T>,
"signed_modulus requires an integer type");
89 return sign(n) * (std::abs(n) % d);
102 static constexpr std::array<int, STANDARD_DIATONIC_STEPS> MAJOR_KEYMAP = { 0, 2, 4, 5, 7, 9, 11 };
103 static constexpr std::array<int, STANDARD_DIATONIC_STEPS> MINOR_KEYMAP = { 0, 2, 3, 5, 7, 8, 10 };
106 int m_numberOfEdoDivisions;
107 std::vector<int> m_keyMap;
109 static constexpr std::array<std::array<int, 2>, 7> DIATONIC_INTERVAL_ADJUSTMENTS = { {
130 const std::optional <std::vector<int>>& keyMap = std::nullopt)
135 throw std::invalid_argument(
"The Transposer class only supports key map arrays of " + std::to_string(
STANDARD_DIATONIC_STEPS) +
" elements");
137 m_keyMap = keyMap.value();
138 }
else if (isMinor) {
139 m_keyMap.assign(MINOR_KEYMAP.begin(), MINOR_KEYMAP.end());
141 m_keyMap.assign(MAJOR_KEYMAP.begin(), MAJOR_KEYMAP.end());
155 m_displacement += interval;
162 const int keyStepEnharmonic = calcStepsBetweenScaleDegrees(m_displacement, m_displacement +
sign(direction));
164 m_alteration -=
sign(direction) * keyStepEnharmonic;
191 const int stepsInAlteration = calcStepsInAlteration(interval, chromaticAlteration);
192 const int stepsInInterval = calcStepsInNormalizedInterval(intervalNormalized);
193 const int stepsInDiatonicInterval = calcStepsBetweenScaleDegrees(m_displacement, m_displacement + intervalNormalized);
195 const int effectiveAlteration = stepsInAlteration + stepsInInterval -
sign(interval) * stepsInDiatonicInterval;
198 m_alteration += effectiveAlteration;
209 while (std::abs(m_alteration) > 0) {
210 const int currSign =
sign(m_alteration);
211 const int currAbsDisp = std::abs(m_alteration);
213 if (std::abs(m_alteration) >= currAbsDisp) {
217 if (currSign !=
sign(m_alteration)) {
234 m_alteration += numberOfEdoDivisions;
249 return calcAbsoluteDivision(
displacement,
alteration) == calcAbsoluteDivision(m_displacement, m_alteration);
253 int calcFifthSteps()
const
256 static constexpr double kFifthsMultiplier = 0.5849625007211562;
257 return static_cast<int>(std::floor(m_numberOfEdoDivisions * kFifthsMultiplier) + 0.5);
260 int calcScaleDegree(
int interval)
const
262 int intervalNormalized =
signedModulus(interval,
int(m_keyMap.size()));
263 if (intervalNormalized < 0) {
264 intervalNormalized += int(m_keyMap.size());
266 return intervalNormalized;
269 int calcStepsBetweenScaleDegrees(
int firstDisplacement,
int secondDisplacement)
const
271 const int firstScaleDegree = calcScaleDegree(firstDisplacement);
272 const int secondScaleDegree = calcScaleDegree(secondDisplacement);
273 int result =
sign(secondDisplacement - firstDisplacement) * (m_keyMap[secondScaleDegree] - m_keyMap[firstScaleDegree]);
275 result += m_numberOfEdoDivisions;
280 int calcStepsInAlteration(
int interval,
int alteration)
const
282 const int fifthSteps = calcFifthSteps();
285 const int result =
sign(interval) * ((plusFifths * fifthSteps) + (minusOctaves * m_numberOfEdoDivisions));
289 int calcStepsInNormalizedInterval(
int intervalNormalized)
const
291 const int fifthSteps = calcFifthSteps();
292 const int index = std::abs(intervalNormalized);
293 const int plusFifths = DIATONIC_INTERVAL_ADJUSTMENTS[index][0];
294 const int minusOctaves = DIATONIC_INTERVAL_ADJUSTMENTS[index][1];
296 return sign(intervalNormalized) * ((plusFifths * fifthSteps) + (minusOctaves * m_numberOfEdoDivisions));
301 const int baseStep = m_keyMap[scaleDegree];
306 const int octaveSteps = octaveCount * m_numberOfEdoDivisions;
307 const int chromaticSteps = calcStepsInAlteration(+1,
alteration);
309 return baseStep + chromaticSteps + octaveSteps;
Provides dependency-free transposition utilities that work with any scale that has 7 diatonic steps a...
Definition music_theory.hpp:100
int displacement() const
Return the current displacement value.
Definition music_theory.hpp:146
void chromaticTranspose(int interval, int chromaticAlteration)
Chromatically transposes by a specified chromatic interval.
Definition music_theory.hpp:188
void stepwiseTranspose(int numberOfEdoDivisions)
Transposes by the given number of EDO divisions and simplifies the spelling.
Definition music_theory.hpp:232
int alteration() const
Return the current chromatic alteration value.
Definition music_theory.hpp:149
void simplifySpelling()
Simplifies the spelling by reducing its alteration while preserving pitch.
Definition music_theory.hpp:207
Transposer(int displacement, int alteration, bool isMinor=false, int numberOfEdoDivisions=STANDARD_12EDO_STEPS, const std::optional< std::vector< int > > &keyMap=std::nullopt)
Constructor function.
Definition music_theory.hpp:128
void diatonicTranspose(int interval)
Transposes the displacement by the specified interval.
Definition music_theory.hpp:153
bool isEnharmonicEquivalent(int displacement, int alteration) const
Determines if the given displacement and alteration refer to the same pitch as the current state.
Definition music_theory.hpp:248
void enharmonicTranspose(int direction)
Transposes enharmonically relative to the current values.
Definition music_theory.hpp:160
A dependency-free, header-only collection of useful functions for music theory.
DiatonicMode
Represents the seven standard diatonic musical modes.
Definition music_theory.hpp:49
@ Phrygian
minor with flat 2
@ Locrian
diminished with flat 2 and 5
@ Lydian
major with raised 4
@ Dorian
minor with raised 6
@ Mixolydian
major with flat 7
constexpr T signedModulus(T n, T d)
Calculates the modulus of positive and negative numbers in a predictable manner.
Definition music_theory.hpp:87
constexpr T sign(T n)
Calculates the sign of an integer.
Definition music_theory.hpp:75
int calcDisplacement(int pitchClass, int octave)
Calculates the displacement value for a given absolute pitch class and octave.
Definition music_theory.hpp:63
constexpr int STANDARD_12EDO_STEPS
this can be overriden when constructing a Transposer instance.
Definition music_theory.hpp:42
constexpr int STANDARD_DIATONIC_STEPS
currently this is the only supported number of diatonic steps.
Definition music_theory.hpp:41